T = 295 (2) K 0.49 × 0.45 × 0.37 mm

 $R_{\rm int} = 0.024$

17894 measured reflections 2412 independent reflections 2100 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[2-(2-pyridylmethyleneamino)benzenesulfonato- $\kappa^3 N, N', O$]zinc(II) dihydrate

Cheng-Xiang Cai,^{a,b} Miao Ou-Yang,^a Zhi-Yuan Zhao^a and Yi-Min Jiang^a*

^aCollege of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China, and ^bDepartment of Chemistry and Life Science, Baise University, Baise 533000, People's Republic of China Correspondence e-mail: ouyangmiao123456@126.com

Received 26 July 2008; accepted 14 August 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.075; data-to-parameter ratio = 13.6.

In the title complex, $[Zn(C_{12}H_9N_2O_3S)_2]\cdot 2H_2O$, the Zn^{II} ion lies on a crystallographic inversion center and is coordinated by four N atoms and two O atoms from two tridentate 2-(2pyridylmethyleneamino)benzenesulfonate ligands in a slightly distorted octahedral environment. In the crystal structure, the complex forms a two-dimensional network through intermolecular $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds.

Related literature

For related literature, see: Casella & Gullotti (1981, 1986); Jiang *et al.* (2006); Li *et al.* (2006, 2007); Wang *et al.* (1994); Zhang *et al.* (2004, 2007, 2008); Correia *et al.* (2003); Zheng *et al.* (2001); Zhou *et al.* (2004).

Experimental

Crystal data $[Zn(C_{12}H_9N_2O_3S)_2]\cdot 2H_2O$ $M_r = 623.95$ Orthorhombic, *Pbcn* a = 19.7090 (15) Å

b = 8.0722 (6) Å c = 16.3390 (13) Å V = 2599.5 (3) Å³ Z = 4

Mo	$K\alpha$ radiation	
$\mu =$	1.16 mm^{-1}	

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.600, T_{\rm max} = 0.673$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.026$	177 parameters
$vR(F^2) = 0.074$	H-atom parameters constrained
S = 1.04 4412 reflections	$\Delta \rho_{\text{max}} = 0.46 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.42 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O4−H1W···O3 ⁱ	0.83	2.21	3.014 (3)	162
$O4-H2W \cdots O2$	0.83	2.06	2.877 (3)	166
C4-H4···O3 ⁱⁱ	0.93	2.48	3.407 (3)	175
$C6-H6\cdots O4^{iii}$	0.93	2.57	3.436 (3)	155

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, z; (ii) -x + 1, y + 1, $-z + \frac{1}{2}$; (iii) x, -y + 2, $z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was funded by Guangxi Science Foundation, Guangxi Zhuang Autonomous Region of the People's Republic of China (grant No. 0731053).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2112).

References

- Bruker (2004). SMART and SAINT. Bruker AXS inc., Madison, WI, USA. Casella, L. & Gullotti, M. (1981). J. Am. Chem. Soc. 103, 6338–6347.
- Casella, L. & Gullotti, M. (1986). Inorg. Chem. 25, 1293-1303.
- Correia, V. R., Bortoluzzi, A. J., Neves, A., Joussef, A. C., Vieira, M. G. M. & Batista, S. C. (2003). Acta Cryst. E59, m464–m466.
- Jiang, Y.-M., Li, J.-M., Xie, F.-Q. & Wang, Y.-F. (2006). Chin. J. Struct. Chem. 25, 767–770.
- Li, J.-X., Jiang, Y.-M. & Li, H.-Y. (2006). Acta Cryst. E62, m2984-m2986.
- Li, H.-Y., Liao, B.-L., Jiang, Y.-M., Zhang, S.-H. & Li, J.-X. (2007). Chin. J. Struct. Chem. 26, 907–910.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, Z., Wu, Z., Yen, Z., Le, Z., Zhu, X. & Huang, Q. (1994). Synth. React. Inorg. Metal Org. Chem. 24, 1453–1460.
- Zhang, S. H., Jiang, Y.-M. & Liu, Z. M. (2008). J. Coord. Chem. 61, 1927–1934.
- Zhang, S.-H., Jiang, Y.-M., Liu, Z. & Zhou, Z.-Y. (2004). *Chin. J. Struct. Chem.* 23, 882–885.
- Zhang, S. H., Li, G.-Z., Zhong, F. & Feng, X.-Z. (2007). *Chin. J. Struct. Chem.* **26**, 1491–1494.
- Zheng, S.-L., Tong, M.-L., Yu, X.-L. & Chen, X.-M. (2001). J. Chem. Soc. Dalton Trans. pp. 586–592.
- Zhou, J.-S., Cai, J.-W., Wang, L. & Ng, S.-W. (2004). Dalton Trans. pp. 1493– 1497.

supplementary materials

Acta Cryst. (2008). E64, m1195 [doi:10.1107/S1600536808026342]

Bis[2-(2-pyridylmethyleneamino)benzenesulfonato- $\kappa^3 N, N', O$]zinc(II) dihydrate

C.-X. Cai, M. Ou-Yang, Z.-Y. Zhao and Y.-M. Jiang

Comment

The design and control of supermolecular coordination complex networks in which both coordination bonds and hydrogen bonds take part in the self-assembly chemistry (Zheng, *et al.*, 2001; Zhou, *et al.*, 2004) have recently garnered increasing interest. Schiff base complexes that contain both sulfur and amino acid functionalities have received much attention owing to their potential applications in pharmacy. (Casella & Gullotti, 1981, 1986; Wang *et al.*, 1994; Li *et al.*, 2006; Zhang *et al.*, 2007, 2008).

Our group has focused on the exploration of the coordination chemistry of the sulfonate ligands for years (Zhang *et al.* 2004; Jiang *et al.* 2006; Li *et al.* 2007). We report here the synthesis and the structure of the mononuclear Zn^{II} Paba complex (Fig. 1). The structure is composed of one Zn^{II} , two deprotonated Paba⁻ ligands and two guest water molecules. The six-coordinated Zn^{II} atom has a distorted octahedral geometry, being coordinated by pyridine N, imine N and sulfonate O atoms from two deprotonated Paba⁻ ligands in a tridentate facial arrangement. This structure is similar to those reported for complexes with N,N',O-tridentate donor ligands (Li *et al.*, 2006; Correia *et al.*, 2003).

There are extensive hydrogen bonds (O4-H2W···O2 and O4-H1W···O3), in which the donor is O-H of the guest water and S=O acts as acceptor, which forms a two-dimension sheet structure (Fig. 2).

Experimental

The potassium salt of 2-(pyridylmethyl)imine-2-benzenesulfonic acid (PabaK) was synthesized according to the literature method (Casella & Gullotti, 1986).

To prepare the title complex, the ligand PabaK (1 mmol, 0.30 g) was dissolved in methanol (10 mL) at 333 K and an aqueous solution (10 mL) containing ZnCl₂(0.5 mmol, 0.068 g) was added. The resulting solution was stirred at 333 K for 4 h, then cooled to room temperature and filtered. Yellow crystals suitable for X-ray diffraction were obtained by slow evaporation over several days, with a yield of 55%. Elemental analysis, found (%): C, 46.05; H, 3.55; N, 8.95; S, 10.42; calc (%): C, 46.16; H, 3.53; N, 8.98; S, 10.26.

Refinement

H atoms bonded to C atoms were positioned geometrically with the C-H distance of 0.93 Å, and treated as riding atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$. Water hydrogens were placed in fixed positions and assigned U_{iso} values of $1.5U_{eq}$ of the water oxygen atom.

Figures

Fig. 1. An ellipsoid plot (30% probability) showing the numbering scheme. Dashed lines indicate hydrogen bonds. Symmetry code: (a) -x+1, y, -z+1/2.

Fig. 2. 2-D structure, as viewed down the a axis. Dashed lines indicate hydrogen bonds.

Bis[2-(2-pyridylmethyleneamino)benzenesulfonato- $\kappa^3 N, N', O$]zinc(II) dihydrate

Crystal data	
$[Zn(C_{12}H_9N_2O_3S_1)_2]\cdot 2H_2O$	$F_{000} = 1280$
$M_r = 623.95$	$D_{\rm x} = 1.594 { m Mg m}^{-3}$
Orthorhombic, Pbcn	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2n 2ab	Cell parameters from 7323 reflections
a = 19.7090 (15) Å	$\theta = 2.5 - 28.2^{\circ}$
b = 8.0722 (6) Å	$\mu = 1.16 \text{ mm}^{-1}$
c = 16.3390 (13) Å	T = 295 (2) K
V = 2599.5 (3) Å ³	Block, yellow
<i>Z</i> = 4	$0.49 \times 0.45 \times 0.37 \text{ mm}$
Data collection	

diffractometer	2412 independent reflections
Radiation source: fine-focus sealed tube	2100 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.024$
T = 295(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -23 \rightarrow 23$
$T_{\min} = 0.600, \ T_{\max} = 0.673$	$k = -9 \rightarrow 9$
17894 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.026$	H-atom parameters constrained
$wR(F^2) = 0.074$	$w = 1/[\sigma^2(F_o^2) + (0.0373P)^2 + 1.7627P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
2412 reflections	$\Delta \rho_{max} = 0.46 \text{ e} \text{ Å}^{-3}$
177 parameters	$\Delta \rho_{min} = -0.42 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.5000	0.82446 (4)	0.2500	0.02769 (11)
S1	0.37616 (2)	0.67719 (6)	0.34320 (3)	0.03070 (14)
01	0.45098 (7)	0.67650 (18)	0.33822 (8)	0.0344 (3)
O2	0.34865 (8)	0.84229 (19)	0.33446 (10)	0.0456 (4)
O3	0.35256 (7)	0.5876 (2)	0.41443 (8)	0.0431 (4)
N1	0.49613 (8)	1.0216 (2)	0.16032 (10)	0.0341 (4)
N2	0.40820 (8)	0.7687 (2)	0.17245 (9)	0.0297 (4)
C1	0.44459 (10)	1.0145 (3)	0.10605 (12)	0.0332 (4)
C2	0.43673 (13)	1.1301 (3)	0.04460 (14)	0.0452 (6)
H2	0.4007	1.1223	0.0081	0.054*
C3	0.48322 (13)	1.2579 (3)	0.03809 (15)	0.0506 (6)
Н3	0.4786	1.3380	-0.0025	0.061*
C4	0.53638 (13)	1.2645 (3)	0.09261 (15)	0.0483 (6)
H4	0.5688	1.3480	0.0890	0.058*
C5	0.54084 (12)	1.1447 (3)	0.15295 (14)	0.0420 (5)
Н5	0.5766	1.1503	0.1900	0.050*
C6	0.39854 (10)	0.8728 (3)	0.11481 (12)	0.0354 (5)
H6	0.3626	0.8590	0.0786	0.042*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

0.36755 (9)	0.6238 (3)	0.17777 (12)	0.0313 (4)
0.34696 (11)	0.5353 (3)	0.10925 (13)	0.0437 (5)
0.3579	0.5736	0.0572	0.052*
0.31015 (12)	0.3900 (3)	0.11817 (15)	0.0524 (6)
0.2962	0.3320	0.0720	0.063*
0.29391 (13)	0.3306 (3)	0.19512 (16)	0.0516 (6)
0.2698	0.2322	0.2005	0.062*
0.31364 (11)	0.4180 (3)	0.26416 (13)	0.0403 (5)
0.3022	0.3792	0.3160	0.048*
0.35039 (10)	0.5632 (3)	0.25581 (11)	0.0300 (4)
0.29845 (11)	1.0939 (4)	0.44343 (14)	0.1079 (10)
0.2572	1.1144	0.4394	0.162*
0.3083	1.0105	0.4158	0.162*
	0.36755 (9) 0.34696 (11) 0.3579 0.31015 (12) 0.2962 0.29391 (13) 0.2698 0.31364 (11) 0.3022 0.35039 (10) 0.29845 (11) 0.2572 0.3083	0.36755 (9)0.6238 (3)0.34696 (11)0.5353 (3)0.35790.57360.31015 (12)0.3900 (3)0.29620.33200.29391 (13)0.3306 (3)0.26980.23220.31364 (11)0.4180 (3)0.30220.37920.35039 (10)0.5632 (3)0.29845 (11)1.0939 (4)0.25721.11440.30831.0105	0.36755 (9)0.6238 (3)0.17777 (12)0.34696 (11)0.5353 (3)0.10925 (13)0.35790.57360.05720.31015 (12)0.3900 (3)0.11817 (15)0.29620.33200.07200.29391 (13)0.3306 (3)0.19512 (16)0.26980.23220.20050.31364 (11)0.4180 (3)0.26416 (13)0.30220.37920.31600.35039 (10)0.5632 (3)0.25581 (11)0.29845 (11)1.0939 (4)0.44343 (14)0.25721.11440.43940.30831.01050.4158

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.02732 (18)	0.03263 (19)	0.02311 (18)	0.000	-0.00389 (11)	0.000
S1	0.0291 (3)	0.0396 (3)	0.0234 (2)	-0.0001 (2)	0.00018 (18)	-0.0016 (2)
01	0.0287 (7)	0.0462 (9)	0.0285 (7)	-0.0028 (6)	-0.0034 (6)	0.0038 (6)
O2	0.0482 (9)	0.0452 (9)	0.0436 (9)	0.0102 (7)	-0.0018 (7)	-0.0079 (7)
O3	0.0416 (8)	0.0620 (10)	0.0257 (7)	-0.0062 (8)	0.0039 (6)	0.0035 (7)
N1	0.0400 (9)	0.0346 (9)	0.0278 (9)	-0.0007 (7)	-0.0057 (7)	0.0011 (7)
N2	0.0278 (8)	0.0375 (9)	0.0238 (8)	-0.0006 (7)	0.0004 (6)	0.0004 (7)
C1	0.0343 (10)	0.0377 (11)	0.0275 (10)	0.0035 (9)	-0.0036 (8)	0.0023 (8)
C2	0.0519 (14)	0.0471 (13)	0.0367 (12)	0.0017 (11)	-0.0113 (10)	0.0096 (10)
C3	0.0728 (17)	0.0386 (13)	0.0403 (13)	-0.0023 (12)	-0.0064 (12)	0.0105 (11)
C4	0.0628 (15)	0.0363 (12)	0.0458 (13)	-0.0117 (11)	-0.0019 (11)	0.0022 (10)
C5	0.0490 (13)	0.0391 (12)	0.0380 (12)	-0.0084 (10)	-0.0102 (10)	0.0012 (9)
C6	0.0310 (11)	0.0475 (12)	0.0276 (10)	0.0001 (9)	-0.0057 (8)	0.0034 (9)
C7	0.0245 (10)	0.0410 (11)	0.0284 (10)	-0.0009 (8)	-0.0004 (8)	-0.0015 (9)
C8	0.0417 (12)	0.0609 (15)	0.0286 (11)	-0.0085 (11)	0.0014 (9)	-0.0050 (10)
C9	0.0505 (14)	0.0679 (16)	0.0389 (13)	-0.0180 (13)	-0.0001 (11)	-0.0169 (12)
C10	0.0464 (14)	0.0552 (15)	0.0530 (15)	-0.0211 (12)	0.0021 (11)	-0.0085 (12)
C11	0.0363 (12)	0.0495 (13)	0.0351 (11)	-0.0088 (10)	0.0038 (9)	0.0017 (10)
C12	0.0232 (9)	0.0399 (11)	0.0270 (10)	-0.0007 (8)	-0.0001 (7)	-0.0023 (8)
O4	0.0592 (13)	0.168 (3)	0.0964 (18)	0.0323 (15)	-0.0209 (12)	-0.0725 (19)

Geometric parameters (Å, °)

Zn1—O1	2.1065 (14)	C3—C4	1.376 (3)
Zn1—O1 ⁱ	2.1065 (14)	С3—Н3	0.9300
Zn1—N1 ⁱ	2.1643 (18)	C4—C5	1.384 (3)
Zn1—N1	2.1643 (18)	C4—H4	0.9300
Zn1—N2	2.2544 (16)	С5—Н5	0.9300
Zn1—N2 ⁱ	2.2544 (16)	С6—Н6	0.9300
S1—O2	1.4459 (16)	С7—С8	1.389 (3)
S1—O3	1.4470 (15)	C7—C12	1.407 (3)

S1—O1	1.4769 (14)	C8—C9	1.387 (3)
S1—C12	1.7730 (19)	С8—Н8	0.9300
N1—C5	1.334 (3)	C9—C10	1.383 (3)
N1—C1	1.350 (2)	С9—Н9	0.9300
N2—C6	1.277 (3)	C10-C11	1.386 (3)
N2—C7	1.421 (3)	C10—H10	0.9300
C1—C2	1.380 (3)	C11—C12	1.384 (3)
C1—C6	1.467 (3)	C11—H11	0.9300
С2—С3	1.384 (3)	O4—H1W	0.8332
С2—Н2	0.9300	O4—H2W	0.8339
O1—Zn1—O1 ⁱ	110.92 (8)	C3—C2—H2	120.5
O1—Zn1—N1 ⁱ	88.27 (6)	C4—C3—C2	118.9 (2)
O1 ⁱ —Zn1—N1 ⁱ	149.76 (6)	С4—С3—Н3	120.6
O1—Zn1—N1	149.76 (6)	С2—С3—Н3	120.6
O1 ⁱ —Zn1—N1	88.27 (6)	C3—C4—C5	118.9 (2)
N1 ⁱ —Zn1—N1	85.36 (9)	С3—С4—Н4	120.6
O1—Zn1—N2	84.45 (5)	С5—С4—Н4	120.6
O1 ⁱ —Zn1—N2	82.55 (5)	N1—C5—C4	122.9 (2)
N1 ⁱ —Zn1—N2	123.75 (6)	N1—C5—H5	118.5
N1—Zn1—N2	74.81 (6)	C4—C5—H5	118.5
O1—Zn1—N2 ⁱ	82.55 (5)	N2—C6—C1	119.53 (18)
O1 ⁱ —Zn1—N2 ⁱ	84.45 (5)	N2—C6—H6	120.2
N1 ⁱ —Zn1—N2 ⁱ	74.81 (6)	С1—С6—Н6	120.2
N1—Zn1—N2 ⁱ	123.75 (6)	C8—C7—C12	118.80 (19)
N2—Zn1—N2 ⁱ	156.97 (9)	C8—C7—N2	122.62 (18)
O2—S1—O3	114.81 (10)	C12—C7—N2	118.51 (17)
O2—S1—O1	111.87 (9)	C9—C8—C7	120.2 (2)
O3—S1—O1	111.31 (9)	С9—С8—Н8	119.9
O2—S1—C12	106.94 (9)	С7—С8—Н8	119.9
O3—S1—C12	107.23 (9)	C10—C9—C8	120.7 (2)
O1—S1—C12	103.86 (9)	С10—С9—Н9	119.7
S1—O1—Zn1	119.57 (8)	С8—С9—Н9	119.7
C5—N1—C1	118.00 (18)	C9—C10—C11	119.9 (2)
C5—N1—Zn1	125.86 (14)	С9—С10—Н10	120.1
C1—N1—Zn1	116.11 (14)	C11—C10—H10	120.1
C6—N2—C7	120.22 (17)	C12-C11-C10	119.8 (2)
C6—N2—Zn1	113.76 (14)	C12—C11—H11	120.1
C7—N2—Zn1	125.63 (12)	C10-C11-H11	120.1
N1—C1—C2	122.3 (2)	C11—C12—C7	120.62 (18)
N1—C1—C6	115.76 (17)	C11—C12—S1	120.65 (15)
C2—C1—C6	121.93 (19)	C7—C12—S1	118.73 (15)
C1—C2—C3	119.1 (2)	H1W—O4—H2W	110.2
C1—C2—H2	120.5		

Symmetry codes: (i) -x+1, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O4—H1W···O3 ⁱⁱ	0.83	2.21	3.014 (3)	162
O4—H2W…O2	0.83	2.06	2.877 (3)	166
C4—H4···O3 ⁱⁱⁱ	0.93	2.48	3.407 (3)	175
C6—H6···O4 ^{iv}	0.93	2.57	3.436 (3)	155

Symmetry codes: (ii) -*x*+1/2, *y*+1/2, *z*; (iii) -*x*+1, *y*+1, -*z*+1/2; (iv) *x*, -*y*+2, *z*-1/2.

Fig. 2

